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INTRODUCTION

In a factorial set up of n factors each at s levels there are
altogether s® assemblics of which a sub-set of N assemblies is known
as an array. An array where all the s¢ assemblies corresponding to
any d factors chosen out of the » factors occur an equal number of
times has been termed by Rao [6] as hypercube of strength d. Later,
Rao [7] extended the definition of hypercube of strength d to cover
a wider class of arrays called orthogonal arrays.

Chakravarti [1] introduced still wider a class of arrays which
he called partially balanced (PB) arrays. An nX N matrix 4 with
entries from a set X of 5 (Z>2) elements is said to be a partially
balanced array with s symbols, n constraints, N assemblies
and strength ¢ if every ¢t X N submatrix of 4 contains the ordered

X1 column vector (x,, Xa,...... > Xi)y X:€2, A(Xy Xgyee....Xy) times,
where A(xy, Xg, ...... x;) is a non mnegative integer and is invariant
under any permutation of x;, ...... 5 Xt

Chakravarti [1] observed that PB arrays can be constructed
from orthogonal arrays by suitably omitting certain assemblies. He
had also shown that main effects of the factors can be estimated
from such arrays, and these, therefore can be considered as main
effect plans. Chakravarti [2] gave some methods of construction of
PB arrays. Two symbol PB arrays of strength four were constructed
by Srivastava and Chopra [8].. Subsequently, Dey et. al., [3] put
forward two methods of construction of partially balanced arrays of
strength two and three.
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This paper presents a method of construction of three symbol
PB arrays of strength two for v or less factors in 2v assemblies when
vis a prime (#£2) or an odd prime power. It may not be out of
place to mention here that these PB arrays have been used by Gupta
[4] and Gupta and Dey [5] to construct main effect plans for 3"
factorials and second order rotatable designs of six levels.

2. THE MEeTHOD OF CONSTRUCTION OF PB ARRAYS

The method of construction to be described in this section gives
us three symbol partially balanced (PB) arrays of strength two for
v factors in 2v assemblies, v being any odd prime or power of prime.

Consider GF(v) where v is any odd prime or prime power. Let
x denote a primitive element of the field. Then it is well known tbat
all the v elements of GF(v) can be represented by

0, x°, x1, x2, ..., x*~%
Let C denote a (v X 1) row vector (c;, Cz, ---» o) cOnSisting of
all the v elements of ‘GF(v) each occurring exactly once in some order

whatsoever. We define
C,=C+aJ, modv ‘ ()

where a is any element of GF(v) and J is a (v X I) row vector of 1's.
Now we construct a (v Xv) matrix B the rows of which are given by
Ca, a€GF(v).
Replacing 0’s, even powers of x and odd powers of x in B by
1’s, 2°s and O’s, respectively we get a (vXv) matrix 4;, say. Similarly
we obtain another matrix 4, from B by replacing 0’s, even powers
of x and odd powers of x by 1’s, 0’s and 2’s, respectively.

Then the (v X2v) matrix
v A=[A1 5 A:_)] . ' ..0(2)
forms, when the columns are treated as assemblies, the required PB
array of strength two for v factors, in three symbols 0,1 and 2. In
fact if A;; stands for the number of times the ordered symbol pair
(i, j) occurs in the 2v ordered pair of symbols that can be formed
from any two rows of A(z j=0, 1, 2), then we have, irrespective of
rows taken

Mo=(—3)/2, Apy=RAp=1, Ap=nye=(r—1)/2,

A1=0 » Ma=dey=l, Agy=(v—3)/2.
We now give a proof of the above statement.

Let F;; (p, q) denote the number of times the symbol pair (i, /)

occurs among the v ordered pairs of symbols that can be formed
from the pth and gth rows of 4, ;

i,j=0,1,2; p,q=0,1, 2,..., (v—1); p#q.
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Let similar meaning be attached to F2;; (p, q) when rows are taken
from A,. To prove that the matrix A defined above gives the PB
array, we have to show that [F; (p, ¢) +F*y; (p, ¢)] is a constant
independent of p and ¢ and is dependent only on i,j. We shall
show below that this constant is equal to A;;, expressions for which
are given above.

If we denote the zero, odd powers of x and even powers of x
of GF(v), by Z, 0 and E respectively, then any pair of elements
formed from any two rows of B can be characterised by one of the
nine pairs (Z, Z), (Z, 0), (Z, E), (0, Z), (0, 0), (0, E), (E, Z), (E, 0),
and (E, E). This is also to be noted that these pairs transform
respectively to the symbol pairs (1, 1), (1, 0), (1, 2), (0, 1), (0, 0),
0, 2), (2, 1), (2, 0) and (2, 2) in 4, and to (1,1), (1,2), (1,0), (2, D),
(2: 2): (2; O), (O: 1)! (0, 2) and (Os 0) in A!-

Thus if N;; (p, q) stands for the frequencies of pairsin B just
as Fi;; (p, q) do in 4, etc., with i, j=Z, 0, and Ein Ny; (p, 9), then
we have :

Floo(p, )+Fo(p, 9)=No(p, ©)+Ne£(p, )

Flu(p, @)+ Foi(p, 9)=Noz(P, 9)+Ne2(p, 9)

Floo( p, @)+ F2q( s ) =Noz(p, )+ Neo( 2, @)

Fho(pr )+ F10(p, )=Nzy(p, 9) + Nze(p, @)

Fly(p, @) +FPulp, 9)=Nzz(p, )+ Nzz(p, ) (3

Fyi9(p, @)+ F*1(p, )=Nze(p,q) + Nzo( D, @)

Floo(p, ©)+F%(p, 9)= Neo( p, )+ Noe(p, 9)

Fly(p, ) +F*u(p, 9)=Nez(p, 9)+Noz(p, q)

Flya(p, @) +Fau(p, )= Nrs(p, 9) +Noo( 2, 9)
Let, now, without loss of generality the pth and gth rows of B be Ca,
and Ca, (a,#4a,) as defined in (1). We note that C,, can be written as
Ca,+dJ where d=:(a,—a,) and that Ca_ is simply a (v X 1) row vector
of all the v elements of GF(v) each occurring exactly once in some
order.

We now define

T;;(d)=Number of j’s-in S;, i, j=Z, E, 0; @)
where

Sz=(0-+d),

Se=[(x"+d), (x*+d), ...... , G2 4-d)]

Sy=[(x*+d), (P +d), werunny (x*-24d)]

additions being done mod v.
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Then, we clearly have

Nifp, D=Tu(d) ; i, j=Z,E,0 we(5)

To complete the proof, we have now to determine the expressions
for the T quantities. The following four distinct cases may arise :

Case (i): dis an even power of x and v is of the form 4n+3(n>0).
Case (if): dis an odd power of x and v is of the form 4n4-3.
Case (iif): d is an even power of x and v is of the form 4n4-1.
Case (iv): d is an odd power of x and v is of the form 4n+1.

We deal with these cases separately.
Case (i) v=4n+3, d even power of x.

Since d is.an even power of x, let us consider d=x".
Now x is a primitive element of GF(v); hence x e
So, x2o+v-D 2 xP0= —, ...(6)
As v=4#n +3, we can see p, is'an odd integer and x20+0-1[2 L d=0
is an element of Sj. '

.d d d . :

Again —, —gy.eeeeey —5= are all distinct elements and odd powers

x' X x°2 A

of x. So
d (&
7(x+.d)~(7 +d )

d e

(7
d xv-24-d)
X ( (—/ +e )
da:  d? d? .
Now, —, are all distinct elements of GF(v) and are

x ';5‘,-.-..., x?]"z
odd powers of x.

d‘z d2‘
So (~x‘ +d ), (7:5 +d ),....., ( pora +d> are also elements of S,.

Thus we can see except one element which is zero, all other (v —3)/2
elements of S, can be grouped into (v—3)/4 pairs such that one
member of every pair is equal to the other member of it multiplied
by some odd power of x. This shows that there are exactly (v—3)/4
even powers of x and (v—3)/4 odd powers of x in So.

Now let us consider the combined set

S=(Sz, Sy). -(8)
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We observe that all the even and odd powers of x except one even
power (d itself) appear in S. Since there are (v—1)/2 even and
(v—1)/2 odd powers of x in GF(v) it is clear that Sk contains (V-3)/4
even powers of x and (V+1)/4 odd powers of x. Obviously there
cannot be any zero in Sg. The only element of Sz is an even power
of x. Hence we get the following table of frequencies,

TABLE 1

v=4n+3, =even power of x
Values of T;;(d)

j
V4 E 0
i
.z 0 1 ' 0
E : 0 (v=-3)/4 (v+1)/4
0 1 (wv=3)/4 (v—3)/4

Case (il) v=4n+3, d=odd power of x

When d is an odd power of x and v is of the form 4n+3, Sk
contains one zero and S, does not contain any zero. This is also to
note here : (i) Sk of case (if) consists of elements of Sy of case (i)
each multiplied by some odd power of x; and (if) S, of case (ii)
consists of elements of Sk of case (i) each _multiplied by some odd
power of x.

Thus the results of case (i) are immediately available from those of
case (i) and is presented in the following table.

TABLE 2

v=4n+43 d=o0dd power of x
Values of T;i(d) -

d z E 0
i
z 0 0 ‘ 1
E 1 (r—3)/4 ' (v-3)/4

0 0 (v+1)/4 (v=3)/4
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Case (iii) and Case (iv) :
Following the same lines as above we can arrive at the frequen-
cies T;;(d) shown in the following tables.
TABLE 3

y=dn+1 d=even power of x
Values of T;3(d)

z E 0
z 0o 1 0
E 1 (v—5)/4 v-1)/4'
0 0 =1/ (v—1)/4

TABLE 4
v=4n+1, d=odd power of x
Values of Ty;(d)
: .

z E 0
z 0 . 0 1
E 0 (v=1)/4 (»=1)/4
0 1 C (v=1)/4 (v=>5)/4

It is now easy to see that the equations at (3) and (5) along with the
tabular frequencies given above, when combined together, give the
following A;;’s, the frequencies of the symbol pairs (i, N, i, 7=0,1,2,
occurring in the PB array : :

7\(]0= (V —3)/29

7\01 =7\10= 1, )

Ngg=Rge=(v—1)/2,

Aga==(v—3)/2.

3, AN EXAD;IPLE V

Let us construct a three symbol PB array for 3=9 factors in 18
assemblies. The elements of GF(3?)are (0, 1, 2, x, x-+1, x+2, 2x,
2x41, 2x-+2), and reductions are done mod [3, P(x)] where P(x), a
minimum, polynomial, is x*+x+2. One can easily see that: x0=1,
ey, X2=2x+ 1, x8=2x+2, x1=2, ¥°=2x, ¥%=x+2, ¥’ =x+1L
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Let

r 0 - 1 x 2x+1 2x+42 2 2x  x42 x+1 ‘I )
1 2 x4+1 2x42  2x 0 2x41 X x42 J

x  x<41 2x 1 2 x42 0 2x42 2x+41
2x4+1 2x+2 1 x42 x 2x  x+41 0 2
B= 2x+4-2 2x 2 x x4l 2x41 xX+42 1 0
2 0 x42 2x 2x+1 1 2x+2 x41 x
2x 2x+1 0 x+1 =x42 2x42 x 2 1
x42 x 2x42 0 1 x+1 2 2x4-1 2x
Loox41 x42 2041 20 x 1 2% 2x42

|" 0 x‘\’ x1 x2 X3 x4 x5 x6 x7 -4
x0 x4 x7 x3 x5- 70 x2 x1 X6
x1 x7 x5 x0 - xt x -0 x3 x2
x2 x8 % x6 xi X5 x? 0 P
=| x3 x5 x x1 x7? x& X8 X0 0
x4 0 x8 x5 x2 x90 X3 x7 x1
x5 x2 0 x7 X6 x3 x1 x4 x0
x6 x1 x3 0 x0 x7 x4 X2 xb
L x7? x8 x2 ; x4 0 x1 x0 x5 x3 ]
; Then
|
—12020202'0-] 1020202027
220001202 002221020
000222102 222000120
202200012 020022210
Ai=| 00 2 002 2 21 As=| 2 2 0 2 2 00 01
212022000 010200222
021020022 201202200
200120220 022102002
Lo22210200] | 200012022 |

Hence the PR arra;y is

A=[4, : 4,].
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SUMMARY

A method of construction of three-symbol partially balanced
(PB) arrays of strength two is put forward. Such arrays can be
constructed for v factors in 2v assemblies whenever v is a prime (#2)
or an odd prime power. It may be mentioned here that these PB
arrays have already been used by Gupta [4] and Gupta and Dey [5]
to construct main effect plans for 3" factorials and second order
rotatable designs of six levels, respectively.
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